Fsub.ExtendedBase.Label

(* This file is distributed under the terms of the MIT License, also
   known as the X11 Licence.  A copy of this license is in the README
   file that accompanied the original distribution of this file.

   Based on code written by:
     Brian Aydemir
     Arthur Charg\'eraud *)


Require Import Coq.Arith.Arith.
Require Import Coq.Arith.Max.
Require Import Coq.Classes.EquivDec.
Require Import Coq.Lists.List.
Require Import Coq.Structures.Equalities.

Require Import Coq.FSets.FSets.
Require Import FqMeta.CoqListFacts.
Require Import FqMeta.FSetExtra.
Require Import FqMeta.FSetWeakNotin.
Require Import FqMeta.LibTactics.

Require Import Lia.

(* ********************************************************************** *)

Defining labels

Labels are structureless objects such that we can always generate one fresh from a finite collection. Equality on labels is eq and decidable. We use Coq's module system to make abstract the implementation of labels.

Module Type LABEL <: UsualDecidableType.

  Parameter label : Set.
  Definition t := label.

  Parameter eq_dec : forall x y : label, {x = y} + {x <> y}.

  Parameter label_fresh_for_list :
    forall (xs : list t), {x : label | ~ List.In x xs}.

  Parameter fresh : list label -> label.

  Parameter fresh_permute : forall l1 l2,
    (forall l, In l l1 <-> In l l2) ->
    fresh l1 = fresh l2.

  Parameter fresh_not_in : forall l, ~ In (fresh l) l.

  Parameter nat_of : label -> nat.

  #[global]
  Hint Resolve eq_dec : core.

  Include HasUsualEq <+ UsualIsEq <+ UsualIsEqOrig.

End LABEL.

The implementation of the above interface is hidden for documentation purposes.

Module Label : LABEL.


End Label.

We make label, fresh, fresh_not_in and label_fresh_for_list available without qualification.

Notation label := Label.label.
Notation fresh := Label.fresh.
Notation fresh_not_in := Label.fresh_not_in.
Notation label_fresh_for_list := Label.label_fresh_for_list.

(* Automatically unfold Label.eq *)
Global Arguments Label.eq /.

It is trivial to declare an instance of EqDec for label.

#[export] Instance EqDec_label : @EqDec label eq eq_equivalence.
Proof. exact Label.eq_dec. Defined.

(* ********************************************************************** *)

Finite sets of labels

We use our implementation of labels to obtain an implementation of finite sets of labels. We give the resulting type an intuitive name, as well as import names of set operations for use within this library. In order to avoid polluting Coq's namespace, we do not use Module Export.

Module Import LabelSetImpl : FSetExtra.WSfun Label :=
  FSetExtra.Make Label.

Notation labels :=
  LabelSetImpl.t.

The LabelSetDecide module provides the fsetdec tactic for solving facts about finite sets of labels.
The LabelSetNotin module provides the destruct_notin and solve_notin for reasoning about non-membership in finite sets of labels, as well as a variety of lemmas about non-membership.
Given the fsetdec tactic, we typically do not need to refer to specific lemmas about finite sets. However, instantiating functors from the FSets library makes a number of setoid rewrites available. These rewrites are crucial to developments since they allow us to replace a set with an extensionally equal set (see the Equal relation on finite sets) in propositions about finite sets.

Module LabelSetFacts := FSetFacts.WFacts_fun Label LabelSetImpl.
Module LabelSetProperties := FSetProperties.WProperties_fun Label LabelSetImpl.

Export (hints) LabelSetFacts.
Export (hints) LabelSetProperties.

(* ********************************************************************** *)

Properties

For any given finite set of labels, we can generate an label fresh for it.

Lemma label_fresh : forall L : labels, { x : label | ~ In x L }.
Proof.
  intros L. destruct (label_fresh_for_list (elements L)) as [a H].
  exists a. intros J. contradiction H.
  rewrite <- CoqListFacts.InA_iff_In. auto using elements_1.
Qed.

(* ********************************************************************** *)

Tactic support for picking fresh labels



gather_labels_with F returns the union of all the finite sets F x where x is a variable from the context such that F x type checks.

Ltac gather_labels_with F :=
  let apply_arg x :=
    match type of F with
      | _ -> _ -> _ -> _ => constr:(@F _ _ x)
      | _ -> _ -> _ => constr:(@F _ x)
      | _ -> _ => constr:(@F x)
    end in
  let rec gather V :=
    match goal with
      | H : _ |- _ =>
        let FH := apply_arg H in
        match V with
          | context [FH] => fail 1
          | _ => gather (union FH V)
        end
      | _ => V
    end in
  let L := gather empty in eval simpl in L.

beautify_fset V assumes that V is built as a union of finite sets and returns the same set cleaned up: empty sets are removed and items are laid out in a nicely parenthesized way.

Ltac beautify_fset V :=
  let rec go Acc E :=
     match E with
     | union ?E1 ?E2 => let Acc2 := go Acc E2 in go Acc2 E1
     | empty => Acc
     | ?E1 => match Acc with
                | empty => E1
                | _ => constr:(union E1 Acc)
              end
     end
  in go empty V.

The tactic pick fresh Y for L takes a finite set of labels L and a fresh name Y, and adds to the context an label with name Y and a proof that ~ In Y L, i.e., that Y is fresh for L. The tactic will fail if Y is already declared in the context.
The variant pick fresh Y is similar, except that Y is fresh for "all labels in the context." This version depends on the tactic gather_labels, which is responsible for returning the set of "all labels in the context." By default, it returns the empty set, but users are free (and expected) to redefine it.

Ltac gather_labels :=
  constr:(empty).

Tactic Notation "pick" "fresh" "label" ident(Y) "for" constr(L) :=
  let Fr := fresh "Fr" in
  let L := beautify_fset L in
  (destruct (label_fresh L) as [Y Fr]).

Tactic Notation "pick" "fresh" "label" ident(Y) :=
  let L := gather_labels in
  pick fresh label Y for L.

Ltac pick_fresh_label y :=
  pick fresh label y.

Example: We can redefine gather_labels to return all the "obvious" labels in the context using the gather_labels_with thus giving us a "useful" version of the "pick fresh" tactic.

Ltac gather_labels ::=
  let A := gather_labels_with (fun x : labels => x) in
  let B := gather_labels_with (fun x : label => singleton x) in
  constr:(union A B).

Lemma example_pick_fresh_use : forall (x y z : label) (L1 L2 L3: labels), True.
Proof.
  intros x y z L1 L2 L3.
  pick fresh label k.

At this point in the proof, we have a new label k and a hypothesis Fr that k is fresh for x, y, z, L1, L2, and L3.

  trivial.
Qed.