Fsub.CaptureTrack.Fsub_LetSum_Definitions
Definition of Fsub (System F with subtyping).
Authors: Brian Aydemir and Arthur Chargu\'eraud, with help from
Aaron Bohannon, Jeffrey Vaughan, and Dimitrios Vytiniotis.
Table of contents:
Require Export Fsub.CaptureTrack.LabelMap.
Require Export Fsub.CaptureTrack.Label.
Require Export FqMeta.Metatheory.
Require Export String.
(* ********************************************************************** *)
Syntax (pre-terms)
Inductive qua : Set :=
| qua_top : qua
| qua_bvar : nat -> qua
| qua_fvar : atom -> qua
| qua_meet : qua -> qua -> qua
| qua_join : qua -> qua -> qua
| qua_bot : qua
.
Inductive typ : Set :=
| typ_top : typ
| typ_bvar : nat -> typ
| typ_fvar : atom -> typ
| typ_arrow : qtyp -> qtyp -> typ
| typ_all : typ -> qtyp -> typ
| typ_qall : qua -> qtyp -> typ
| typ_sum : qtyp -> qtyp -> typ
| typ_pair : qtyp -> qtyp -> typ
| typ_ref : qtyp -> typ
with qtyp : Set :=
| qtyp_qtyp : qua -> typ -> qtyp
.
Inductive exp : Set :=
| exp_bvar : nat -> exp
| exp_fvar : atom -> exp
| exp_abs : qua -> qtyp -> exp -> exp
| exp_app : exp -> exp -> qua -> exp
| exp_tabs : qua -> typ -> exp -> exp
| exp_tapp : exp -> typ -> exp
| exp_qabs : qua -> qua -> exp -> exp
| exp_qapp : exp -> qua -> exp
| exp_let : qua -> exp -> exp -> exp
| exp_inl : qua -> exp -> exp
| exp_inr : qua -> exp -> exp
| exp_case : exp -> qua -> exp -> qua -> exp -> exp
| exp_pair : qua -> exp -> exp -> exp
| exp_first : exp -> exp
| exp_second : exp -> exp
| exp_ref : qua -> exp -> exp
| exp_ref_label : qua -> label -> exp
| exp_deref : exp -> exp
| exp_set_ref : exp -> exp -> exp
| exp_upqual : qua -> exp -> exp
| exp_check : qua -> exp -> exp
.
We declare the constructors for indices and variables to be
coercions. For example, if Coq sees a nat where it expects an
exp, it will implicitly insert an application of exp_bvar;
similar behavior happens for atoms. Thus, we may write
(exp_abs typ_top (exp_app 0 x)) instead of (exp_abs typ_top
(exp_app (exp_bvar 0) (exp_fvar x))).
Coercion typ_bvar : nat >-> typ.
Coercion typ_fvar : atom >-> typ.
Coercion exp_bvar : nat >-> exp.
Coercion exp_fvar : atom >-> exp.
Coercion qua_bvar : nat >-> qua.
Coercion qua_fvar : atom >-> qua.
(* ********************************************************************** *)
Fixpoint concretize (q : qua) : (option concrete_qua) :=
match q with
| qua_top => Some cqua_top
| qua_fvar X => None
| qua_bvar n => None
| qua_join Q1 Q2 =>
match (concretize Q1) with
| Some cqua_top => Some cqua_top
| Some cqua_bot => (concretize Q2)
| None => None
end
| qua_meet Q1 Q2 =>
match (concretize Q1) with
| Some cqua_top => (concretize Q2)
| Some cqua_bot => Some cqua_bot
| None => None
end
| qua_bot => Some cqua_bot
end.
match q with
| qua_top => Some cqua_top
| qua_fvar X => None
| qua_bvar n => None
| qua_join Q1 Q2 =>
match (concretize Q1) with
| Some cqua_top => Some cqua_top
| Some cqua_bot => (concretize Q2)
| None => None
end
| qua_meet Q1 Q2 =>
match (concretize Q1) with
| Some cqua_top => (concretize Q2)
| Some cqua_bot => Some cqua_bot
| None => None
end
| qua_bot => Some cqua_bot
end.
abstractize goes the other way, giving us a qualifier term from
a concrete, runtime qualifier.
Definition abstractize (s : concrete_qua) :=
match s with
| cqua_top => qua_top
| cqua_bot => qua_bot
end.
match s with
| cqua_top => qua_top
| cqua_bot => qua_bot
end.
cqua_compatible represents the simple linear order on the two-point
binary lattice: bot <= top.
Inductive cqua_compatible : concrete_qua -> concrete_qua -> Prop :=
| cqua_compatible_same : forall s, cqua_compatible s s
| cqua_compatible_up : cqua_compatible cqua_bot cqua_top.
Notation "s ≤ t" := (cqua_compatible s t) (at level 70).
(* ********************************************************************** *)
| cqua_compatible_same : forall s, cqua_compatible s s
| cqua_compatible_up : cqua_compatible cqua_bot cqua_top.
Notation "s ≤ t" := (cqua_compatible s t) (at level 70).
(* ********************************************************************** *)
Opening terms
- tt: Denotes an operation involving types appearing in types.
- te: Denotes an operation involving types appearing in expressions.
- ee: Denotes an operation involving expressions appearing in expressions.
Fixpoint open_qq_rec (K : nat) (R : qua) (Q : qua) {struct Q} : qua :=
match Q with
| qua_top => qua_top
| qua_bvar J => if (K == J) then R else (qua_bvar J)
| qua_fvar X => qua_fvar X
| qua_meet Q1 Q2 => qua_meet (open_qq_rec K R Q1) (open_qq_rec K R Q2)
| qua_join Q1 Q2 => qua_join (open_qq_rec K R Q1) (open_qq_rec K R Q2)
| qua_bot => qua_bot
end.
Fixpoint open_tt_rec (K : nat) (U : typ) (T : typ) {struct T} : typ :=
match T with
| typ_top => typ_top
| typ_bvar J => if K == J then U else (typ_bvar J)
| typ_fvar X => typ_fvar X
| typ_arrow T1 T2 => typ_arrow (open_tqt_rec K U T1) (open_tqt_rec (S K) U T2)
| typ_all T1 T2 => typ_all (open_tt_rec K U T1) (open_tqt_rec (S K) U T2)
| typ_qall Q T => typ_qall Q (open_tqt_rec (S K) U T)
| typ_sum T1 T2 => typ_sum (open_tqt_rec K U T1) (open_tqt_rec K U T2)
| typ_pair T1 T2 => typ_pair (open_tqt_rec K U T1) (open_tqt_rec K U T2)
| typ_ref T1 => typ_ref (open_tqt_rec K U T1)
end
with open_tqt_rec (K : nat) (U : typ) (T : qtyp) {struct T} : qtyp :=
match T with
| qtyp_qtyp Q T => qtyp_qtyp Q (open_tt_rec K U T)
end.
Fixpoint open_qt_rec (K : nat) (R : qua) (T : typ) {struct T} : typ :=
match T with
| typ_top => typ_top
| typ_bvar J => typ_bvar J
| typ_fvar X => typ_fvar X
| typ_arrow T1 T2 => typ_arrow (open_qqt_rec K R T1) (open_qqt_rec (S K) R T2)
| typ_all T1 T2 => typ_all (open_qt_rec K R T1) (open_qqt_rec (S K) R T2)
| typ_qall Q T => typ_qall (open_qq_rec K R Q) (open_qqt_rec (S K) R T)
| typ_sum T1 T2 => typ_sum (open_qqt_rec K R T1) (open_qqt_rec K R T2)
| typ_pair T1 T2 => typ_pair (open_qqt_rec K R T1) (open_qqt_rec K R T2)
| typ_ref T1 => typ_ref (open_qqt_rec K R T1)
end
with open_qqt_rec (K : nat) (R : qua) (T : qtyp) {struct T} : qtyp :=
match T with
| qtyp_qtyp Q T => qtyp_qtyp (open_qq_rec K R Q) (open_qt_rec K R T)
end.
Fixpoint open_te_rec (K : nat) (U : typ) (e : exp) {struct e} : exp :=
match e with
| exp_bvar i => exp_bvar i
| exp_fvar x => exp_fvar x
| exp_abs P V e1 => exp_abs P (open_tqt_rec K U V) (open_te_rec (S K) U e1)
| exp_app e1 e2 Q => exp_app (open_te_rec K U e1) (open_te_rec K U e2) Q
| exp_tabs P V e1 => exp_tabs P(open_tt_rec K U V) (open_te_rec (S K) U e1)
| exp_tapp e1 V => exp_tapp (open_te_rec K U e1) (open_tt_rec K U V)
| exp_qabs P Q e1 => exp_qabs P Q (open_te_rec (S K) U e1)
| exp_qapp e1 Q => exp_qapp (open_te_rec K U e1) Q
| exp_let Q e1 e2 => exp_let Q (open_te_rec K U e1) (open_te_rec (S K) U e2)
| exp_inl P e1 => exp_inl P (open_te_rec K U e1)
| exp_inr P e2 => exp_inr P (open_te_rec K U e2)
| exp_case e1 Q1 e2 Q2 e3 =>
exp_case (open_te_rec K U e1) Q1 (open_te_rec (S K) U e2) Q2 (open_te_rec (S K) U e3)
| exp_pair P e1 e2 => exp_pair P (open_te_rec K U e1) (open_te_rec K U e2)
| exp_first e1 => exp_first (open_te_rec K U e1)
| exp_second e2 => exp_second (open_te_rec K U e2)
| exp_ref P e1 => exp_ref P (open_te_rec K U e1)
| exp_ref_label P l => exp_ref_label P l
| exp_deref e1 => exp_deref (open_te_rec K U e1)
| exp_set_ref e1 e2 => exp_set_ref (open_te_rec K U e1) (open_te_rec K U e2)
| exp_check P e1 => exp_check P (open_te_rec K U e1)
| exp_upqual P e1 => exp_upqual P (open_te_rec K U e1)
end.
Fixpoint open_qe_rec (K : nat) (R : qua) (e : exp) {struct e} : exp :=
match e with
| exp_bvar i => exp_bvar i
| exp_fvar x => exp_fvar x
| exp_abs P V e1 => exp_abs (open_qq_rec K R P) (open_qqt_rec K R V) (open_qe_rec (S K) R e1)
| exp_app e1 e2 Q => exp_app (open_qe_rec K R e1) (open_qe_rec K R e2) (open_qq_rec K R Q)
| exp_tabs P V e1 => exp_tabs (open_qq_rec K R P) (open_qt_rec K R V) (open_qe_rec (S K) R e1)
| exp_tapp e1 V => exp_tapp (open_qe_rec K R e1) (open_qt_rec K R V)
| exp_qabs P Q e1 => exp_qabs (open_qq_rec K R P) (open_qq_rec K R Q) (open_qe_rec (S K) R e1)
| exp_qapp e1 Q => exp_qapp (open_qe_rec K R e1) (open_qq_rec K R Q)
| exp_let Q e1 e2 => exp_let (open_qq_rec K R Q) (open_qe_rec K R e1) (open_qe_rec (S K) R e2)
| exp_inl P e1 => exp_inl (open_qq_rec K R P) (open_qe_rec K R e1)
| exp_inr P e2 => exp_inr (open_qq_rec K R P) (open_qe_rec K R e2)
| exp_case e1 Q1 e2 Q2 e3 =>
exp_case (open_qe_rec K R e1) (open_qq_rec K R Q1) (open_qe_rec (S K) R e2) (open_qq_rec K R Q2) (open_qe_rec (S K) R e3)
| exp_pair P e1 e2 => exp_pair (open_qq_rec K R P) (open_qe_rec K R e1) (open_qe_rec K R e2)
| exp_first e1 => exp_first (open_qe_rec K R e1)
| exp_second e2 => exp_second (open_qe_rec K R e2)
| exp_ref P e1 => exp_ref (open_qq_rec K R P) (open_qe_rec K R e1)
| exp_ref_label P l => exp_ref_label (open_qq_rec K R P) l
| exp_deref e1 => exp_deref (open_qe_rec K R e1)
| exp_set_ref e1 e2 => exp_set_ref (open_qe_rec K R e1) (open_qe_rec K R e2)
| exp_check P e1 => exp_check (open_qq_rec K R P) (open_qe_rec K R e1)
| exp_upqual P e1 => exp_upqual (open_qq_rec K R P) (open_qe_rec K R e1)
end.
Fixpoint open_ee_rec (k : nat) (f : exp) (R : qua) (e : exp) {struct e} : exp :=
match e with
| exp_bvar i => if k == i then f else (exp_bvar i)
| exp_fvar x => exp_fvar x
| exp_abs P V e1 => exp_abs (open_qq_rec k R P) (open_qqt_rec k R V) (open_ee_rec (S k) f R e1)
| exp_app e1 e2 Q => exp_app (open_ee_rec k f R e1) (open_ee_rec k f R e2) (open_qq_rec k R Q)
| exp_tabs P V e1 => exp_tabs (open_qq_rec k R P) (open_qt_rec k R V) (open_ee_rec (S k) f R e1)
| exp_tapp e1 V => exp_tapp (open_ee_rec k f R e1) (open_qt_rec k R V)
| exp_qabs P Q e1 => exp_qabs (open_qq_rec k R P) (open_qq_rec k R Q) (open_ee_rec (S k) f R e1)
| exp_qapp e1 Q => exp_qapp (open_ee_rec k f R e1) (open_qq_rec k R Q)
| exp_let Q e1 e2 => exp_let (open_qq_rec k R Q) (open_ee_rec k f R e1) (open_ee_rec (S k) f R e2)
| exp_inl P e1 => exp_inl (open_qq_rec k R P) (open_ee_rec k f R e1)
| exp_inr P e2 => exp_inr (open_qq_rec k R P)(open_ee_rec k f R e2)
| exp_case e1 Q1 e2 Q2 e3 =>
exp_case (open_ee_rec k f R e1)
(open_qq_rec k R Q1)
(open_ee_rec (S k) f R e2)
(open_qq_rec k R Q2)
(open_ee_rec (S k) f R e3)
| exp_pair P e1 e2 => exp_pair (open_qq_rec k R P) (open_ee_rec k f R e1) (open_ee_rec k f R e2)
| exp_first e1 => exp_first (open_ee_rec k f R e1)
| exp_second e2 => exp_second (open_ee_rec k f R e2)
| exp_ref P e1 => exp_ref (open_qq_rec k R P) (open_ee_rec k f R e1)
| exp_ref_label P l => exp_ref_label (open_qq_rec k R P) l
| exp_deref e1 => exp_deref (open_ee_rec k f R e1)
| exp_set_ref e1 e2 => exp_set_ref (open_ee_rec k f R e1) (open_ee_rec k f R e2)
| exp_check P e1 => exp_check (open_qq_rec k R P) (open_ee_rec k f R e1)
| exp_upqual P e1 => exp_upqual (open_qq_rec k R P) (open_ee_rec k f R e1)
end.
Many common applications of opening replace index zero with an
expression or variable. The following definitions provide
convenient shorthands for such uses. Note that the order of
arguments is switched relative to the definitions above. For
example, (open_tt T X) can be read as "substitute the variable
X for index 0 in T" and "open T with the variable X."
Recall that the coercions above let us write X in place of
(typ_fvar X), assuming that X is an atom.
Definition open_tt T U := open_tt_rec 0 U T.
Definition open_te e U := open_te_rec 0 U e.
Definition open_ee e1 e2 R:= open_ee_rec 0 e2 R e1.
Definition open_qq Q R := open_qq_rec 0 R Q.
Definition open_qe e R := open_qe_rec 0 R e.
Definition open_qt T R := open_qt_rec 0 R T.
Definition open_qqt T R := open_qqt_rec 0 R T.
Definition open_tqt T R := open_tqt_rec 0 R T.
(* ********************************************************************** *)
Local closure
type_all : forall X T1 T2, type T1 -> type (open_tt T2 X) -> type (typ_all T1 T2) .Or, we could quantify over as many variables as possible ("universal" quantification), as in
type_all : forall T1 T2, type T1 -> (forall X : atom, type (open_tt T2 X)) -> type (typ_all T1 T2) .It is possible to show that the resulting relations are equivalent. The former makes it easy to build derivations, while the latter provides a strong induction principle. McKinna and Pollack used both forms of this relation in their work on formalizing Pure Type Systems.
Inductive qual : qua -> Prop :=
| qual_top :
qual qua_top
| qual_fvar : forall (X : atom),
qual (qua_fvar X)
| qual_meet : forall Q1 Q2,
qual Q1 ->
qual Q2 ->
qual (qua_meet Q1 Q2)
| qual_join : forall Q1 Q2,
qual Q1 ->
qual Q2 ->
qual (qua_join Q1 Q2)
| qual_bot :
qual qua_bot
.
Inductive type : typ -> Prop :=
| type_top :
type typ_top
| type_var : forall X,
type (typ_fvar X)
| type_arrow : forall L T1 T2,
qtype T1 ->
(forall X: atom, X `notin` L -> qtype (open_qqt T2 X)) ->
type (typ_arrow T1 T2)
| type_all : forall L T1 T2,
type T1 ->
(forall X : atom, X `notin` L -> qtype (open_tqt T2 X)) ->
type (typ_all T1 T2)
| type_qall : forall L Q T,
qual Q ->
(forall X : atom, X `notin` L -> qtype (open_qqt T X)) ->
type (typ_qall Q T)
| type_sum : forall T1 T2,
qtype T1 ->
qtype T2 ->
type (typ_sum T1 T2)
| type_pair : forall T1 T2,
qtype T1 ->
qtype T2 ->
type (typ_pair T1 T2)
with qtype : qtyp -> Prop :=
| qtype_qtyp : forall Q T,
qual Q ->
type T ->
qtype (qtyp_qtyp Q T)
.
Inductive expr : exp -> Prop :=
| expr_var : forall x,
expr (exp_fvar x)
| expr_abs : forall L P T e1,
qual P ->
qtype T ->
(forall x : atom, x `notin` L -> expr (open_ee e1 x x)) ->
expr (exp_abs P T e1)
| expr_app : forall e1 e2 Q,
expr e1 ->
expr e2 ->
qual Q ->
expr (exp_app e1 e2 Q)
| expr_tabs : forall L P T e1,
qual P ->
type T ->
(forall X : atom, X `notin` L -> expr (open_te e1 X)) ->
expr (exp_tabs P T e1)
| expr_tapp : forall e1 V,
expr e1 ->
type V ->
expr (exp_tapp e1 V)
| expr_qabs : forall L P Q e1,
qual P ->
qual Q ->
(forall X : atom, X `notin` L -> expr (open_qe e1 X)) ->
expr (exp_qabs P Q e1)
| expr_qapp : forall e1 Q,
expr e1 ->
qual Q ->
expr (exp_qapp e1 Q)
| expr_let : forall L Q e1 e2,
qual Q ->
expr e1 ->
(forall x : atom, x `notin` L -> expr (open_ee e2 x x)) ->
expr (exp_let Q e1 e2)
| expr_inl : forall P e1,
qual P ->
expr e1 ->
expr (exp_inl P e1)
| expr_inr : forall P e1,
qual P ->
expr e1 ->
expr (exp_inr P e1)
| expr_case : forall L e1 Q1 e2 Q2 e3,
expr e1 ->
qual Q1 ->
qual Q2 ->
(forall x : atom, x `notin` L -> expr (open_ee e2 x x)) ->
(forall x : atom, x `notin` L -> expr (open_ee e3 x x)) ->
expr (exp_case e1 Q1 e2 Q2 e3)
| expr_pair : forall P e1 e2,
qual P ->
expr e1 ->
expr e2 ->
expr (exp_pair P e1 e2)
| expr_first : forall e1,
expr e1 ->
expr (exp_first e1)
| expr_second : forall e1,
expr e1 ->
expr (exp_second e1)
| expr_upqual : forall P e1,
qual P ->
expr e1 ->
expr (exp_upqual P e1)
| expr_check : forall P e1,
qual P ->
expr e1 ->
expr (exp_check P e1)
.
| qual_top :
qual qua_top
| qual_fvar : forall (X : atom),
qual (qua_fvar X)
| qual_meet : forall Q1 Q2,
qual Q1 ->
qual Q2 ->
qual (qua_meet Q1 Q2)
| qual_join : forall Q1 Q2,
qual Q1 ->
qual Q2 ->
qual (qua_join Q1 Q2)
| qual_bot :
qual qua_bot
.
Inductive type : typ -> Prop :=
| type_top :
type typ_top
| type_var : forall X,
type (typ_fvar X)
| type_arrow : forall L T1 T2,
qtype T1 ->
(forall X: atom, X `notin` L -> qtype (open_qqt T2 X)) ->
type (typ_arrow T1 T2)
| type_all : forall L T1 T2,
type T1 ->
(forall X : atom, X `notin` L -> qtype (open_tqt T2 X)) ->
type (typ_all T1 T2)
| type_qall : forall L Q T,
qual Q ->
(forall X : atom, X `notin` L -> qtype (open_qqt T X)) ->
type (typ_qall Q T)
| type_sum : forall T1 T2,
qtype T1 ->
qtype T2 ->
type (typ_sum T1 T2)
| type_pair : forall T1 T2,
qtype T1 ->
qtype T2 ->
type (typ_pair T1 T2)
with qtype : qtyp -> Prop :=
| qtype_qtyp : forall Q T,
qual Q ->
type T ->
qtype (qtyp_qtyp Q T)
.
Inductive expr : exp -> Prop :=
| expr_var : forall x,
expr (exp_fvar x)
| expr_abs : forall L P T e1,
qual P ->
qtype T ->
(forall x : atom, x `notin` L -> expr (open_ee e1 x x)) ->
expr (exp_abs P T e1)
| expr_app : forall e1 e2 Q,
expr e1 ->
expr e2 ->
qual Q ->
expr (exp_app e1 e2 Q)
| expr_tabs : forall L P T e1,
qual P ->
type T ->
(forall X : atom, X `notin` L -> expr (open_te e1 X)) ->
expr (exp_tabs P T e1)
| expr_tapp : forall e1 V,
expr e1 ->
type V ->
expr (exp_tapp e1 V)
| expr_qabs : forall L P Q e1,
qual P ->
qual Q ->
(forall X : atom, X `notin` L -> expr (open_qe e1 X)) ->
expr (exp_qabs P Q e1)
| expr_qapp : forall e1 Q,
expr e1 ->
qual Q ->
expr (exp_qapp e1 Q)
| expr_let : forall L Q e1 e2,
qual Q ->
expr e1 ->
(forall x : atom, x `notin` L -> expr (open_ee e2 x x)) ->
expr (exp_let Q e1 e2)
| expr_inl : forall P e1,
qual P ->
expr e1 ->
expr (exp_inl P e1)
| expr_inr : forall P e1,
qual P ->
expr e1 ->
expr (exp_inr P e1)
| expr_case : forall L e1 Q1 e2 Q2 e3,
expr e1 ->
qual Q1 ->
qual Q2 ->
(forall x : atom, x `notin` L -> expr (open_ee e2 x x)) ->
(forall x : atom, x `notin` L -> expr (open_ee e3 x x)) ->
expr (exp_case e1 Q1 e2 Q2 e3)
| expr_pair : forall P e1 e2,
qual P ->
expr e1 ->
expr e2 ->
expr (exp_pair P e1 e2)
| expr_first : forall e1,
expr e1 ->
expr (exp_first e1)
| expr_second : forall e1,
expr e1 ->
expr (exp_second e1)
| expr_upqual : forall P e1,
qual P ->
expr e1 ->
expr (exp_upqual P e1)
| expr_check : forall P e1,
qual P ->
expr e1 ->
expr (exp_check P e1)
.
We also define what it means to be the
body of an abstraction, since this simplifies slightly the
definition of reduction and subsequent proofs. It is not strictly
necessary to make this definition in order to complete the
development.
Definition body_e (e : exp) :=
exists L, forall x : atom, x `notin` L -> expr (open_ee e x x).
(* ********************************************************************** *)
Environments
Inductive binding : Set :=
| bind_sub : typ -> binding
| bind_typ : qtyp -> binding
| bind_qua : qua -> binding.
A binding (X ~ bind_sub T) records that a type variable X is a
subtype of T, and a binding (x ~ bind_typ U) records that an
expression variable x has type U.
We define an abbreviation env for the type of environments, and
an abbreviation empty for the empty environment.
Note: Each instance of Notation below defines an abbreviation
since the left-hand side consists of a single identifier that is
not in quotes. These abbreviations are used for both parsing (the
left-hand side is equivalent to the right-hand side in all
contexts) and printing (the right-hand side is pretty-printed as
the left-hand side). Since nil is normally a polymorphic
constructor whose type argument is implicit, we prefix the name
with "@" to signal to Coq that we are going to supply arguments
to nil explicitly.
Examples: We use a convention where environments are
never built using a cons operation ((x, a) :: E) where E is
non-nil. This makes the shape of environments more uniform and
saves us from excessive fiddling with the shapes of environments.
For example, Coq's tactics sometimes distinguish between consing
on a new binding and prepending a one element list, even though
the two operations are convertible with each other.
Consider the following environments written in informal notation.
1. (empty environment) 2. x : T 3. x : T, Y <: S 4. E, x : T, FIn the third example, we have an environment that binds an expression variable x to T and a type variable Y to S. In Coq, we would write these environments as follows.
1. empty 2. x ~ bind_typ T 3. Y ~ bind_sub S ++ x ~ bind_typ T 4. F ++ x ~ bind_typ T ++ EThe symbol "++" denotes list concatenation and associates to the right. (That notation is defined in Coq's List library.) Note that in Coq, environments grow on the left, since that is where the head of a list is.
(* ********************************************************************** *)
Well-formedness
Inductive wf_qua : env -> qua -> Prop :=
| wf_qua_top : forall E,
wf_qua E qua_top
| wf_qua_fvar : forall R E (X : atom),
binds X (bind_qua R) E ->
wf_qua E (qua_fvar X)
| wf_qua_term_fvar : forall T E (x : atom),
binds x (bind_typ T) E ->
wf_qua E (qua_fvar x)
| wf_qua_meet : forall E Q1 Q2,
wf_qua E Q1 ->
wf_qua E Q2 ->
wf_qua E (qua_meet Q1 Q2)
| wf_qua_join : forall E Q1 Q2,
wf_qua E Q1 ->
wf_qua E Q2 ->
wf_qua E (qua_join Q1 Q2)
| wf_qua_bot : forall E,
wf_qua E qua_bot
.
Inductive wf_typ : env -> typ -> Prop :=
| wf_typ_top : forall E,
wf_typ E typ_top
| wf_typ_var : forall U E (X : atom),
binds X (bind_sub U) E ->
wf_typ E (typ_fvar X)
| wf_typ_arrow : forall L E T1 T2,
wf_qtyp E T1 ->
(forall X : atom, X `notin` L ->
wf_qtyp (X ~ bind_typ T1 ++ E) (open_qqt T2 X)) ->
wf_typ E (typ_arrow T1 T2)
| wf_typ_all : forall L E T1 T2,
wf_typ E T1 ->
(forall X : atom, X `notin` L ->
wf_qtyp (X ~ bind_sub T1 ++ E) (open_tqt T2 X)) ->
wf_typ E (typ_all T1 T2)
| wf_typ_qall : forall L E T1 T2,
wf_qua E T1 ->
(forall X : atom, X `notin` L ->
wf_qtyp (X ~ bind_qua T1 ++ E) (open_qqt T2 X)) ->
wf_typ E (typ_qall T1 T2)
| wf_typ_sum : forall E T1 T2,
wf_qtyp E T1 ->
wf_qtyp E T2 ->
wf_typ E (typ_sum T1 T2)
| wf_typ_pair : forall E T1 T2,
wf_qtyp E T1 ->
wf_qtyp E T2 ->
wf_typ E (typ_pair T1 T2)
with wf_qtyp : env -> qtyp -> Prop :=
| wf_qtyp_qtyp : forall E Q T,
wf_qua E Q ->
wf_typ E T ->
wf_qtyp E (qtyp_qtyp Q T)
.
An environment E is well-formed, denoted (wf_env E), if each
atom is bound at most at once and if each binding is to a
well-formed type. This is a stronger relation than the uniq
relation defined in the MetatheoryEnv library. We need this
relation in order to restrict the subtyping and typing relations,
defined below, to contain only well-formed environments. (This
relation is missing in the original statement of the POPLmark
Challenge.)
Inductive wf_env : env -> Prop :=
| wf_env_empty :
wf_env empty
| wf_env_sub : forall (E : env) (X : atom) (T : typ),
wf_env E ->
wf_typ E T ->
X `notin` dom E ->
wf_env (X ~ bind_sub T ++ E)
| wf_env_typ : forall (E : env) (x : atom) (T : qtyp),
wf_env E ->
wf_qtyp E T ->
x `notin` dom E ->
wf_env (x ~ bind_typ T ++ E)
| wf_env_qua : forall (E : env) (X : atom) (Q : qua),
wf_env E ->
wf_qua E Q ->
X `notin` dom E ->
wf_env (X ~ bind_qua Q ++ E)
.
(* ********************************************************************** *)
Subtyping
Inductive subqual : env -> qua -> qua -> Prop :=
| subqual_top : forall E Q,
wf_env E ->
wf_qua E Q ->
subqual E Q qua_top
| subqual_bot : forall E Q,
wf_env E ->
wf_qua E Q ->
subqual E qua_bot Q
| subqual_refl_qvar : forall E X,
wf_env E ->
wf_qua E (qua_fvar X) ->
subqual E (qua_fvar X) (qua_fvar X)
| subqual_trans_qvar : forall R E Q X,
binds X (bind_qua R) E ->
subqual E R Q ->
subqual E (qua_fvar X) Q
| subqual_trans_term_qvar : forall R E T Q X,
binds X (bind_typ (qtyp_qtyp R T)) E ->
subqual E R Q ->
subqual E (qua_fvar X) Q
| subqual_join_inl : forall E R1 R2 Q,
subqual E Q R1 ->
wf_qua E R2 ->
subqual E Q (qua_join R1 R2)
| subqual_join_inr : forall E R1 R2 Q,
wf_qua E R1 ->
subqual E Q R2 ->
subqual E Q (qua_join R1 R2)
| subqual_join_elim : forall E R1 R2 Q,
subqual E R1 Q ->
subqual E R2 Q ->
subqual E (qua_join R1 R2) Q
| subqual_meet_eliml : forall E R1 R2 Q,
subqual E R1 Q ->
wf_qua E R2 ->
subqual E (qua_meet R1 R2) Q
| subqual_meet_elimr : forall E R1 R2 Q,
wf_qua E R1 ->
subqual E R2 Q ->
subqual E (qua_meet R1 R2) Q
| subqual_meet_intro : forall E R1 R2 Q,
subqual E Q R1 ->
subqual E Q R2 ->
subqual E Q (qua_meet R1 R2)
.
Inductive sub : env -> typ -> typ -> Prop :=
| sub_top : forall E S,
wf_env E ->
wf_typ E S ->
sub E S typ_top
| sub_refl_tvar : forall E X,
wf_env E ->
wf_typ E (typ_fvar X) ->
sub E (typ_fvar X) (typ_fvar X)
| sub_trans_tvar : forall U E T X,
binds X (bind_sub U) E ->
sub E U T ->
sub E (typ_fvar X) T
| sub_arrow : forall L E S1 S2 T1 T2,
subqtype E T1 S1 ->
(forall X : atom, X `notin` L ->
subqtype (X ~ bind_typ T1 ++ E) (open_qqt S2 X) (open_qqt T2 X)) ->
sub E (typ_arrow S1 S2) (typ_arrow T1 T2)
| sub_all : forall L E S1 S2 T1 T2,
sub E T1 S1 ->
(forall X : atom, X `notin` L ->
subqtype (X ~ bind_sub T1 ++ E) (open_tqt S2 X) (open_tqt T2 X)) ->
sub E (typ_all S1 S2) (typ_all T1 T2)
| sub_qall : forall L E S1 S2 T1 T2,
subqual E T1 S1 ->
(forall X : atom, X `notin` L ->
subqtype (X ~ bind_qua T1 ++ E) (open_qqt S2 X) (open_qqt T2 X)) ->
sub E (typ_qall S1 S2) (typ_qall T1 T2)
| sub_sum : forall E S1 S2 T1 T2,
subqtype E S1 T1 ->
subqtype E S2 T2 ->
sub E (typ_sum S1 S2) (typ_sum T1 T2)
| sub_pair : forall E S1 S2 T1 T2,
subqtype E S1 T1 ->
subqtype E S2 T2 ->
sub E (typ_pair S1 S2) (typ_pair T1 T2)
with subqtype : env -> qtyp -> qtyp -> Prop :=
| sub_qtyp_qtyp : forall E Q1 T1 Q2 T2,
subqual E Q1 Q2 ->
sub E T1 T2 ->
subqtype E (qtyp_qtyp Q1 T1) (qtyp_qtyp Q2 T2)
.
(* ********************************************************************** *)
Typing
Fixpoint fv_exp_for_qua (e : exp) {struct e} : qua :=
match e with
| exp_bvar i => qua_bot
| exp_fvar x => qua_fvar x
| exp_abs P V e1 => (fv_exp_for_qua e1)
| exp_app e1 e2 q => (qua_join (fv_exp_for_qua e1) (fv_exp_for_qua e2))
| exp_tabs P V e1 => (fv_exp_for_qua e1)
| exp_tapp e1 V => (fv_exp_for_qua e1)
| exp_qabs P Q e1 => (fv_exp_for_qua e1)
| exp_qapp e1 Q => (fv_exp_for_qua e1)
| exp_let q e1 e2 => (qua_join (fv_exp_for_qua e1) (fv_exp_for_qua e2))
| exp_inl P e1 => (fv_exp_for_qua e1)
| exp_inr P e2 => (fv_exp_for_qua e2)
| exp_case e1 q1 e2 q2 e3 => (qua_join (fv_exp_for_qua e1) (qua_join
(fv_exp_for_qua e2) (fv_exp_for_qua e3)))
| exp_pair P e1 e2 => (qua_join (fv_exp_for_qua e1) (fv_exp_for_qua e2))
| exp_first e1 => (fv_exp_for_qua e1)
| exp_second e2 => (fv_exp_for_qua e2)
| exp_ref P e1 => (fv_exp_for_qua e1)
| exp_ref_label P l => qua_bot
| exp_deref e1 => (fv_exp_for_qua e1)
| exp_set_ref e1 e2 => (qua_join (fv_exp_for_qua e1) (fv_exp_for_qua e2))
| exp_upqual P e1 => (fv_exp_for_qua e1)
| exp_check P e1 => (fv_exp_for_qua e1)
end.
Inductive typing : env -> exp -> qtyp -> Prop :=
| typing_var : forall E x Q S,
wf_env E ->
binds x (bind_typ (qtyp_qtyp Q S)) E ->
typing E (exp_fvar x) (qtyp_qtyp (qua_fvar x) S)
| typing_abs : forall L P E V e1 T1,
subqual E (fv_exp_for_qua e1) P ->
(forall x : atom, x `notin` L ->
typing (x ~ bind_typ V ++ E) (open_ee e1 x x) (open_qqt T1 x)) ->
typing E (exp_abs P V e1) (qtyp_qtyp P (typ_arrow V T1))
| typing_app : forall Q R T1 E e1 e2 T2,
typing E e1 (qtyp_qtyp Q (typ_arrow (qtyp_qtyp R T1) T2)) ->
typing E e2 (qtyp_qtyp R T1) ->
typing E (exp_app e1 e2 R) (open_qqt T2 R)
| typing_tabs : forall L P E V e1 T1,
subqual E (fv_exp_for_qua e1) P ->
(forall X : atom, X `notin` L ->
typing (X ~ bind_sub V ++ E) (open_te e1 X) (open_tqt T1 X)) ->
typing E (exp_tabs P V e1) (qtyp_qtyp P (typ_all V T1))
| typing_tapp : forall Q T1 E e1 T T2,
typing E e1 (qtyp_qtyp Q (typ_all T1 T2)) ->
sub E T T1 ->
typing E (exp_tapp e1 T) (open_tqt T2 T)
| typing_qabs : forall L E P Q e1 T1,
subqual E (fv_exp_for_qua e1) P ->
(forall X : atom, X `notin` L ->
typing (X ~ bind_qua Q ++ E) (open_qe e1 X) (open_qqt T1 X)) ->
typing E (exp_qabs P Q e1) (qtyp_qtyp P (typ_qall Q T1))
| typing_qapp : forall R Q E e1 Q1 T,
typing E e1 (qtyp_qtyp R (typ_qall Q1 T)) ->
subqual E Q Q1 ->
typing E (exp_qapp e1 Q) (open_qqt T Q)
| typing_sub : forall S E e T,
typing E e S ->
subqtype E S T ->
typing E e T
| typing_let : forall L Q S T2 e1 e2 E,
typing E e1 (qtyp_qtyp Q S) ->
wf_qtyp E T2 ->
(forall x : atom, x `notin` L ->
typing (x ~ bind_typ (qtyp_qtyp Q S) ++ E) (open_ee e2 x x) T2) ->
typing E (exp_let Q e1 e2) T2
| typing_inl : forall P Q1 S1 T2 e1 E,
subqual E Q1 P ->
typing E e1 (qtyp_qtyp Q1 S1) ->
wf_qtyp E T2 ->
typing E (exp_inl P e1) (qtyp_qtyp P (typ_sum (qtyp_qtyp Q1 S1) T2))
| typing_inr : forall P T1 Q2 S2 e1 E,
subqual E Q2 P ->
typing E e1 (qtyp_qtyp Q2 S2) ->
wf_qtyp E T1 ->
typing E (exp_inr P e1) (qtyp_qtyp P (typ_sum T1 (qtyp_qtyp Q2 S2)))
| typing_case : forall L R Q1 S1 Q2 S2 T e1 e2 e3 E,
typing E e1 (qtyp_qtyp R (typ_sum (qtyp_qtyp Q1 S1) (qtyp_qtyp Q2 S2))) ->
wf_qtyp E T ->
(forall x : atom, x `notin` L ->
typing (x ~ bind_typ (qtyp_qtyp Q1 S1) ++ E) (open_ee e2 x x) T) ->
(forall x : atom, x `notin` L ->
typing (x ~ bind_typ (qtyp_qtyp Q2 S2) ++ E) (open_ee e3 x x) T) ->
typing E (exp_case e1 Q1 e2 Q2 e3) T
| typing_pair : forall P Q1 S1 Q2 S2 e1 e2 E,
subqual E (qua_join Q1 Q2) P ->
typing E e1 (qtyp_qtyp Q1 S1) ->
typing E e2 (qtyp_qtyp Q2 S2) ->
typing E (exp_pair P e1 e2) (qtyp_qtyp P (typ_pair (qtyp_qtyp Q1 S1) (qtyp_qtyp Q2 S2)))
| typing_first : forall Q T1 T2 e E,
typing E e (qtyp_qtyp Q (typ_pair T1 T2)) ->
typing E (exp_first e) T1
| typing_second : forall Q T1 T2 e E,
typing E e (qtyp_qtyp Q (typ_pair T1 T2)) ->
typing E (exp_second e) T2
| typing_upqual : forall E Q T P e,
typing E e (qtyp_qtyp Q T) ->
subqual E Q P ->
typing E (exp_upqual P e) (qtyp_qtyp P T)
| typing_check : forall E Q T P e,
typing E e (qtyp_qtyp Q T) ->
subqual E Q P ->
typing E (exp_check P e) (qtyp_qtyp Q T)
.
(* ********************************************************************** *)
Inductive value : exp -> Prop :=
| value_abs : forall P T e1,
expr (exp_abs P T e1) ->
value (exp_abs P T e1)
| value_tabs : forall P T e1,
expr (exp_tabs P T e1) ->
value (exp_tabs P T e1)
| value_qabs : forall P Q e1,
expr (exp_qabs P Q e1) ->
value (exp_qabs P Q e1)
| value_inl : forall P e1,
qual P ->
value e1 ->
value (exp_inl P e1)
| value_inr : forall P e1,
qual P ->
value e1 ->
value (exp_inr P e1)
| value_pair : forall P e1 e2,
qual P ->
value e1 ->
value e2 ->
value (exp_pair P e1 e2)
.
(* ********************************************************************** *)
| value_abs : forall P T e1,
expr (exp_abs P T e1) ->
value (exp_abs P T e1)
| value_tabs : forall P T e1,
expr (exp_tabs P T e1) ->
value (exp_tabs P T e1)
| value_qabs : forall P Q e1,
expr (exp_qabs P Q e1) ->
value (exp_qabs P Q e1)
| value_inl : forall P e1,
qual P ->
value e1 ->
value (exp_inl P e1)
| value_inr : forall P e1,
qual P ->
value e1 ->
value (exp_inr P e1)
| value_pair : forall P e1 e2,
qual P ->
value e1 ->
value e2 ->
value (exp_pair P e1 e2)
.
(* ********************************************************************** *)
Inductive red : exp -> exp -> Prop :=
| red_app_1 : forall e1 e1' e2 Q,
expr e2 ->
qual Q ->
red e1 e1' ->
red (exp_app e1 e2 Q) (exp_app e1' e2 Q)
| red_app_2 : forall e1 e2 e2' Q,
value e1 ->
qual Q ->
red e2 e2' ->
red (exp_app e1 e2 Q) (exp_app e1 e2' Q)
| red_tapp : forall e1 e1' V,
type V ->
red e1 e1' ->
red (exp_tapp e1 V) (exp_tapp e1' V)
| red_qapp : forall e1 e1' R,
qual R ->
red e1 e1' ->
red (exp_qapp e1 R) (exp_qapp e1' R)
| red_abs : forall P T e1 v2 Q,
expr (exp_abs P T e1) ->
value v2 ->
qual Q ->
red (exp_app (exp_abs P T e1) v2 Q) (open_ee e1 v2 Q)
| red_tabs : forall P T1 e1 T2,
expr (exp_tabs P T1 e1) ->
type T2 ->
red (exp_tapp (exp_tabs P T1 e1) T2) (open_te e1 T2)
| red_qabs : forall P Q1 e1 Q2,
expr (exp_qabs P Q1 e1) ->
qual Q2 ->
red (exp_qapp (exp_qabs P Q1 e1) Q2) (open_qe e1 Q2)
| red_let_1 : forall Q e1 e1' e2,
qual Q ->
red e1 e1' ->
body_e e2 ->
red (exp_let Q e1 e2) (exp_let Q e1' e2)
| red_let : forall Q v1 e2,
qual Q ->
value v1 ->
body_e e2 ->
red (exp_let Q v1 e2) (open_ee e2 v1 Q)
| red_inl_1 : forall P e1 e1',
qual P ->
red e1 e1' ->
red (exp_inl P e1) (exp_inl P e1')
| red_inr_1 : forall P e1 e1',
qual P ->
red e1 e1' ->
red (exp_inr P e1) (exp_inr P e1')
| red_case_1 : forall e1 e1' Q1 Q2 e2 e3,
qual Q1 ->
qual Q2 ->
red e1 e1' ->
body_e e2 ->
body_e e3 ->
red (exp_case e1 Q1 e2 Q2 e3) (exp_case e1' Q1 e2 Q2 e3)
| red_case_inl : forall P v1 Q1 Q2 e2 e3,
qual P ->
qual Q1 ->
qual Q2 ->
value v1 ->
body_e e2 ->
body_e e3 ->
red (exp_case (exp_inl P v1) Q1 e2 Q2 e3) (open_ee e2 v1 Q1)
| red_case_inr : forall P v1 Q1 Q2 e2 e3,
qual P ->
qual Q1 ->
qual Q2 ->
value v1 ->
body_e e2 ->
body_e e3 ->
red (exp_case (exp_inr P v1) Q1 e2 Q2 e3) (open_ee e3 v1 Q2)
| red_pair_1 : forall P e1 e1' e2,
qual P ->
red e1 e1' ->
expr e2 ->
red (exp_pair P e1 e2) (exp_pair P e1' e2)
| red_pair_2 : forall P v1 e2 e2',
qual P ->
value v1 ->
red e2 e2' ->
red (exp_pair P v1 e2) (exp_pair P v1 e2')
| red_pair_first_1 : forall e1 e1',
red e1 e1' ->
red (exp_first e1) (exp_first e1')
| red_pair_second_1 : forall e1 e1',
red e1 e1' ->
red (exp_second e1) (exp_second e1')
| red_pair_first_2 : forall P v1 v2,
qual P ->
value v1 ->
value v2 ->
red (exp_first (exp_pair P v1 v2)) v1
| red_pair_second_2 : forall P v1 v2,
qual P ->
value v1 ->
value v2 ->
red (exp_second (exp_pair P v1 v2)) v2
The upqual and check rules ensure that concrete qualifiers
are compatible before stepping. This ensures that progress/preservation
are meaningful -- ill-typed/qualified programs will get stuck.
| red_upqual_1 : forall P e1 e1',
qual P ->
red e1 e1' ->
red (exp_upqual P e1) (exp_upqual P e1')
| red_upqual_abs : forall P Q cP cQ V e1,
qual P ->
qual Q ->
expr (exp_abs Q V e1) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_upqual P (exp_abs Q V e1)) (exp_abs P V e1)
| red_upqual_tabs : forall P Q cP cQ V e1,
qual P ->
qual Q ->
expr (exp_tabs Q V e1) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_upqual P (exp_tabs Q V e1)) (exp_tabs P V e1)
| red_upqual_qabs : forall P Q cP cQ V e1,
qual P ->
qual Q ->
expr (exp_qabs Q V e1) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_upqual P (exp_qabs Q V e1)) (exp_qabs P V e1)
| red_upqual_inl : forall P Q cP cQ e1,
qual P ->
qual Q ->
expr (exp_inl Q e1) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_upqual P (exp_inl Q e1)) (exp_inl P e1)
| red_upqual_inr : forall P Q cP cQ e1,
qual P ->
qual Q ->
expr (exp_inr Q e1) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_upqual P (exp_inr Q e1)) (exp_inr P e1)
| red_upqual_pair : forall P Q cP cQ e1 e2,
qual P ->
qual Q ->
expr (exp_pair Q e1 e2) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_upqual P (exp_pair Q e1 e2)) (exp_pair P e1 e2)
| red_check_1 : forall P e1 e1',
qual P ->
red e1 e1' ->
red (exp_check P e1) (exp_check P e1')
| red_check_abs : forall P Q cP cQ V e1,
qual P ->
qual Q ->
expr (exp_abs Q V e1) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_check P (exp_abs Q V e1)) (exp_abs Q V e1)
| red_check_tabs : forall P Q cP cQ V e1,
qual P ->
qual Q ->
expr (exp_tabs Q V e1) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_check P (exp_tabs Q V e1)) (exp_tabs Q V e1)
| red_check_qabs : forall P Q cP cQ V e1,
qual P ->
qual Q ->
expr (exp_qabs Q V e1) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_check P (exp_qabs Q V e1)) (exp_qabs Q V e1)
| red_check_inl : forall P Q cP cQ e1,
qual P ->
qual Q ->
expr (exp_inl Q e1) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_check P (exp_inl Q e1)) (exp_inl Q e1)
| red_check_inr : forall P Q cP cQ e1,
qual P ->
qual Q ->
expr (exp_inr Q e1) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_check P (exp_inr Q e1)) (exp_inr Q e1)
| red_check_pair : forall P Q cP cQ e1 e2,
qual P ->
qual Q ->
expr (exp_pair Q e1 e2) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_check P (exp_pair Q e1 e2)) (exp_pair Q e1 e2)
.
(* ********************************************************************** *)
qual P ->
red e1 e1' ->
red (exp_upqual P e1) (exp_upqual P e1')
| red_upqual_abs : forall P Q cP cQ V e1,
qual P ->
qual Q ->
expr (exp_abs Q V e1) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_upqual P (exp_abs Q V e1)) (exp_abs P V e1)
| red_upqual_tabs : forall P Q cP cQ V e1,
qual P ->
qual Q ->
expr (exp_tabs Q V e1) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_upqual P (exp_tabs Q V e1)) (exp_tabs P V e1)
| red_upqual_qabs : forall P Q cP cQ V e1,
qual P ->
qual Q ->
expr (exp_qabs Q V e1) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_upqual P (exp_qabs Q V e1)) (exp_qabs P V e1)
| red_upqual_inl : forall P Q cP cQ e1,
qual P ->
qual Q ->
expr (exp_inl Q e1) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_upqual P (exp_inl Q e1)) (exp_inl P e1)
| red_upqual_inr : forall P Q cP cQ e1,
qual P ->
qual Q ->
expr (exp_inr Q e1) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_upqual P (exp_inr Q e1)) (exp_inr P e1)
| red_upqual_pair : forall P Q cP cQ e1 e2,
qual P ->
qual Q ->
expr (exp_pair Q e1 e2) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_upqual P (exp_pair Q e1 e2)) (exp_pair P e1 e2)
| red_check_1 : forall P e1 e1',
qual P ->
red e1 e1' ->
red (exp_check P e1) (exp_check P e1')
| red_check_abs : forall P Q cP cQ V e1,
qual P ->
qual Q ->
expr (exp_abs Q V e1) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_check P (exp_abs Q V e1)) (exp_abs Q V e1)
| red_check_tabs : forall P Q cP cQ V e1,
qual P ->
qual Q ->
expr (exp_tabs Q V e1) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_check P (exp_tabs Q V e1)) (exp_tabs Q V e1)
| red_check_qabs : forall P Q cP cQ V e1,
qual P ->
qual Q ->
expr (exp_qabs Q V e1) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_check P (exp_qabs Q V e1)) (exp_qabs Q V e1)
| red_check_inl : forall P Q cP cQ e1,
qual P ->
qual Q ->
expr (exp_inl Q e1) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_check P (exp_inl Q e1)) (exp_inl Q e1)
| red_check_inr : forall P Q cP cQ e1,
qual P ->
qual Q ->
expr (exp_inr Q e1) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_check P (exp_inr Q e1)) (exp_inr Q e1)
| red_check_pair : forall P Q cP cQ e1 e2,
qual P ->
qual Q ->
expr (exp_pair Q e1 e2) ->
concretize P = Some cP ->
concretize Q = Some cQ ->
cqua_compatible cQ cP ->
red (exp_check P (exp_pair Q e1 e2)) (exp_pair Q e1 e2)
.
(* ********************************************************************** *)
Automation
#[export] Hint Constructors type qtype expr qual wf_qua wf_typ wf_qtyp wf_env value red : core.
#[export] Hint Constructors subqual subqtype: core.
#[export] Hint Resolve sub_top sub_refl_tvar sub_arrow : core.
#[export] Hint Resolve sub_sum sub_pair : core.
#[export] Hint Resolve typing_var typing_app typing_tapp typing_sub typing_qapp : core.
#[export] Hint Resolve typing_inl typing_inr typing_pair typing_first typing_second : core.
#[export] Hint Resolve typing_upqual typing_check : core.
#[export] Hint Constructors cqua_compatible : core.